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Abstract Recently, it has been proposed that the Navier–Stokes equations and a relevant
linear advection model have the same long-time statistical properties, in particular, they
have the same scaling exponents of their structure functions. This assertion has been inves-
tigate rigorously in the context of certain nonlinear deterministic phenomenological shell
model, the Sabra shell model, of turbulence and its corresponding linear advection counter-
part model. This relationship has been established through a “homotopy-like” coefficient λ

which bridges continuously between the two systems. That is, for λ = 1 one obtains the full
nonlinear model, and the corresponding linear advection model is achieved for λ = 0. In this
paper, we investigate the validity of this assertion for certain stochastic phenomenological
shell models of turbulence driven by an additive noise. We prove the continuous depen-
dence of the solutions with respect to the parameter λ. Moreover, we show the existence of
a finite-dimensional random attractor for each value of λ and establish the upper semicon-
tinuity property of this random attractors, with respect to the parameter λ. This property is
proved by a pathwise argument. Our study aims toward the development of basic results and
techniques that may contribute to the understanding of the relation between the long-time
statistical properties of the nonlinear and linear models.
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1 Introduction

1.1 Motivation

The GOY shell model [29] and [35], and Sabra shell model [32] are some of the most in-
teresting and most popular examples of simplified phenomenological models of turbulence.
This is because, although departing from reality, they capture some essential statistical prop-
erties and features of turbulent flows, like the energy and the enstrophy cascade, and the
power law decay of the structure functions in some range of wave numbers—the inertial
range. We refer the reader to, e.g., [2, 7, 10, 12, 27, 28], and references therein for several
descriptions and results. Often, in numerical or theoretical investigations, such models are
driven by white noise forces. Both the stochastic GOY and Sabra shell models have the form

dun + (νk2
nun + bn(u,u)

)
dt = σndβn, n = 1,2, . . . (1)

where un(t) are complex valued, ν > 0 is a parameter that represents the viscosity, kn = k02n

for some k0 > 0 are representing wave numbers, u(t) denotes the sequence (un(t))n≥1,
bn(·,·) is a complex valued bilinear function of complex sequences u = (uj )j≥1, that de-
pends only on the variables un−2, un−1, un+1, un+2 (where we impose the boundary condi-
tions u−1(t) = u0(t) = 0). σn is a sequence of complex numbers, that are usually chosen
equal to zero for all n greater than some n0 (which describes the range of wavenumbers
and consequently the length scales of external forces), (βn)n≥1 is a sequence of independent
complex valued Brownian motions. A rigorous theoretical analysis of the stochastic equa-
tion (1) and some of its statistical properties have been investigated in [4, 24], while other
rigorous results in the case of deterministic force have been developed in [5, 12–14]. The
exact form of bn(·,·) varies from one model to another. However, in all the various models
in the sequel we assume that bn(·,·) is chosen in such a way that

∞∑

n=1

bn(u, v)vn = 0, (2)

for all square summable sequences u = (um)m≥1 and v = (vm)m≥1. Equation (2) implies a
formal law of the conservation of energy in the inviscid (ν = 0) and unforced form of (1).

In analogy with the statistical theory of turbulence it is interesting to investigate the
accompanying linear advection equation to (1), that is the linear auxiliary equation in the
unknown w(t) = (wn(t))n≥1

dwn + (νk2
nwn + bn(u,w)

)
dt = σndβn, n = 1,2, . . . (3)

where u is the solution of (1), and wn(t) are complex valued functions. There is an extensive
literature investigating the statistical properties of linear advection (passive-scalar) equations
in turbulent flows, which we do not pretend to cover in this contribution. We observe, how-
ever, that (3) is not the linearized version of (1) about the solution u. This is because the term
bn(w,u) is missing from (3), and an additive force still appears in the right-hand side of (3).
Equation (3) should be considered as an auxiliary equation which, to some extent, may have
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similar statistical properties to those of (1), but is amenable to linear analysis (for instance
the use of propagators). There is some numerical and heuristic evidence that some statistical
properties of the solutions to (3), like the scaling exponents of the structure functions, are
the same as those of the solutions to (1), see [1] and [5]. It is then of interest to understand
the properties of the joint system

dun + (νk2
nun + bn(u,u)

)
dt = σn dβn

(4)
dwn + (νk2

nwn + bn(u,w)
)
dt = σn dβn,

for n = 1,2, . . . . In addition, the following idea has been introduced first in [1] and proved
rigorously later in [5]: one can symmetrize system (4) by means of two additional terms as
follows

dun + (νk2
nun + bn(u,u) + λbn(w,u)

)
dt = σn dβn

(5)
dwn + (νk2

nwn + bn(u,w) + λbn(w,w)
)
dt = σn dβn,

where λ ∈ R is a parameter, and to analyze the dependence on λ of the properties of (5). For
λ = 0 we recover (4). Observe that for λ �= 0, setting v = λw and multiplying the second
equation by λ, we have a perfectly symmetric system for the pair (u, v), except for the
force and initial conditions. Thus, to some extent, we would expect that u and λw have
similar statistical properties for λ �= 0. If we consider, for instance, the structure function
Sp(kn) = 〈|un|p〉 (we do not specify at this heuristic level the meaning of the averaging
procedure 〈.〉), one might expect, as in the case of turbulent flows, that

Sp(kn) ∼ k
−ζp
n

for n lies in the so-called inertial range. The numbers ζp are called scaling exponents, which
are universal in turbulent flows as the Reynolds number tends to infinity, i.e., as the viscosity
tends to zero. Therefore, one possible definition of ζp is

lim
(ν,kn)→(0,∞)

logSp(kn)

logkn

= −ζp,

where the limit is taken along a region of the form να ≤ k−1
n ≤ νβ for some α > 0 (usu-

ally α = 4
3 ). This is in order to ensure that the wavenumber considered are lying in the

heart of the inertial range, as the viscosity tends to zero. Such statistical property, if it
holds for w, it holds as well for λw with the same value ζp (and vice versa): indeed,
if S(w)

p (kn) and S(λw)
p (kn) are the structure functions of w and λw, respectively, we have

S(λw)
p (kn) = λpS(w)

p (kn) and lim(ν,kn)→(0,∞)
logλp

logkn
= 0, which imply the claim. Thus, if the

scaling exponents ζp exist for both u and λw (this assumption seems to be reasonable based
on numerical finding in [1, 5] and the references therein) and are equal (which is reasonable
to assume thanks to the symmetry u ↔ λw described above), then they are equal for u and
w. In summary, it is, therefore, reasonable to expect that some statistical properties like the
existence and the value of scaling exponents, are the same for u and w, whenever λ �= 0.

Finally, it will be of great interest to show that such statistical properties depend con-
tinuously on λ, as λ → 0: if this is true, then the solutions of (1) and (3) have the same
statistical properties of the kind just described above. In particular, if this program is true,
one is sure that results for the simpler linear model (3) can be translated to (1), which will
be a remarkable breakthrough.
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1.2 Content of the Paper

The program above, outlined in [1] and [5], is composed of several steps, some of them
are not easy to be justified rigorously. The first rigorous result has been obtained in [5]
states that: in the case of deterministic forces, solutions of (5) depend continuously on λ

in C([0, T ];H × H), for every given T > 0. Here H is the space of square summable
sequences (vn)n≥1 in C. This implies that the structure functions, defined as time average on
any fixed finite time interval [0, T ]:

Sp(kn) = 1

T

∫ T

0

(∣∣un(t)
∣∣p)dt

depend continuously on λ. One of the limitations of this result of [5] that it considers de-
terministic forces. Here, we remove this restriction and prove the same result in the case
described above of white noise forces.

Several other issues have to be solved in order to be able to claim that the program
described above is complete. One of the other major issues in [5] is that the statistics is being
considered on finite intervals of time [0, T ] instead of being considered on the attractor,
i.e. as T → ∞. The existence of the limit as T → ∞, in the time average (definition of
Sp(kn)) of the deterministically forced system is, therefore, one of these issues of [5]. We
do not directly address this difficult problem here, in the stochastically forced case, but we
content ourselves with a structural result about the infinite time horizon properties of (5):
we prove existence of a finite-dimensional random attractor. This is a pathwise property, in
the vein of the property of continuous dependence on λ in C([0, T ];H) stated above for
the deterministic case. We hope that this result, or the techniques involved in establishing it,
may contribute to the understanding of the problem of the long-term behavior, i.e. T → ∞.
Notice that we construct the random attractor for system (5) for every λ ∈ R, hence if we take
in particular λ = 0 the first component of the system is decoupled and thus the projection of
the attractor on the first component is the random attractor of equation (1). Thus we prove
in this paper the existence of a finite-dimensional random attractor for the stochastic GOY
and Sabra shell models, as a particular case of a more general result. However, the general
result for system (5) may help to prove further results on the relations between the statistics
of the nonlinear and the linear cases.

Due to the Itô nature of the previous equations, it is clear that other kind of analysis
could be performed, in distribution and average sense instead of pathwise. This will be done
elsewhere. We restrict ourselves here to purely pathwise properties.

The paper is organized as follows. In Sect. 2, we present the functional framework and
prove pathwise well-posedness of system (5), and the continuous dependence of the solu-
tions on λ. In Sect. 3, we give some preliminary results about random attractors and some of
their properties. In Sect. 4, we prove the existence of a random attractor for every coefficient
λ ∈ R, its upper semicontinuity with respect to λ; and finally that the random attractor has a
finite Hausdorff dimension.

2 Well-Posedness and Continuous Dependence on λ

2.1 Functional Setting

Let us introduce the following spaces of complex valued sequences; we consider them as
vector spaces on the field of real numbers. The space H is the space of l2 sequences over
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the field of complex numbers C:

H =
{

u = (un)n≥1: un ∈ C for all n ≥ 1 and
∞∑

n=1

|un|2 < ∞
}

.

It is a Hilbert space with the inner product 〈u,v〉H := Re
∑∞

n=1 unvn and the norm given by
|u|2H =∑∞

n=1 |un|2. Let us recall that we have defined kn = 2nk0, n ≥ 1, with k0 > 0 given.
We introduce now the Hilbert spaces D(A) ⊂ V ⊂ H defined as

V =
{

u ∈ H :
∞∑

n=1

k2
n|un|2 < ∞

}

with norm ‖u‖2
V =∑∞

n=1 k2
n|un|2. Moreover, for all α ≥ 0, we define

D
(
Aα
)=
{

u ∈ H :
∞∑

n=1

k4α
n |un|2 < ∞

}

.

On the latter space we define the linear operator Aα :D(Aα) ⊂ H → H as

(
Aαu

)
n
= k2α

n un, for all u ∈ D
(
Aα
)
.

The operator Aα is self-adjoint and strictly positive definite:

〈
Aαu,u

〉
H

≥ k2α
0 |u|2H , for all u ∈ D

(
Aα
)
.

We also observe that the inclusion maps of D(A) ⊂ V and V ⊂ H are compact embeddings.
We finally introduce the bilinear operator B(·,·) :V × V → H . For the GOY shell model it
is defined as

bn(u, v) := (B(u, v)
)
n

:= ikn

(
1

4
vn−1un+1 − 1

2
(un+1vn+2 + vn+1un+2) + 1

8
un−1vn−2

)
.

For the Sabra shell model we define it as

bn(u, v) := (B(u, v)
)
n

:= i

3
kn+1

[
(1 + δ)vn+1un+2 + (2 − δ)un+1vn+2

]

+ i

3
kn

[
(1 − 2δ)un−1vn+1 − (1 + δ)vn−1un+1

]

+ i

3
kn−1

[
(2 − δ)un−1vn−2 + (1 − 2δ)un−2vn−1

]

(see [12–14]), where δ is a real number. In both shell models we impose the boundary
conditions u−1 = u0 = 0. What distinguishes the Sabra shell model from the GOY one is the
dependence of the former on the parameter δ, which is in charge for changing its character
from the so-called 2d Turbulence regime to the 3d Turbulence regime, depending on the
definiteness of the sign of a second (in addition to the energy) quadratic conserved quantity;
see [5, 12–14] and [32].
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For both the GOY and Sabra shell models, the operator B(·,·) is a bilinear continuous
operator from V ×H to H , and also from H ×V to H , as it will be stated in the next lemma.
We also state its basic skew-symmetry property.

Lemma 1 There is a constant C > 0 such that

∣
∣B(u, v)

∣
∣
H

≤ C‖u‖V |v|H , u ∈ V, v ∈ H

and

∣
∣B(u, v)

∣
∣
H

≤ C‖v‖V |u|H , v ∈ V, u ∈ H.

Hence, B(·,·) is a bilinear continuous operator from V × H to H , and from H × V to H .
Moreover,

〈
B(u, v), v

〉
H

= 0

for all u ∈ V and v ∈ H , or v ∈ V and u ∈ H .

Proof The first inequality follows from the fact that

∞∑

n=1

k2
n|un|2|vn|2 ≤

(
sup

n

k2
n|un|2

) ∞∑

n=1

|vn|2 ≤ ‖u‖2
V |v|2H

and the second inequality follows similarly by interchanging u and v. Having proved these
facts, the expression in the last identity is well defined. The proof of

∑∞
n=1 Re[B(u, v)nvn] =

0 can be found in [4] for the Goy model and in [12] for the Sabra model. �

We will also consider the space V ′, the dual space of V , which can be identified as

V ′ =
{

u = (un)n≥1: un ∈ C for all n ≥ 1, and
∞∑

n=1

k−2
n |un|2 < ∞

}

with the norm |u|2
V ′ :=∑∞

n=1 k−2
n |un|2, u ∈ V ′. It is clear that H ⊂ V ′, and V ′ is the dual of

V (with respect to H ), with dual pairing between V ′ and V defined as

〈u,v〉V ′,V := Re
∞∑

n=1

unvn, ∀u ∈ V ′, v ∈ V.

Observe that 〈u,v〉H = 〈u,v〉V ′,V , when u ∈ H , for every v ∈ V .
It is easy to extend the operator A as a bounded linear operator from V to V ′. One can

also extend B to a bilinear operator B(·,·) :H ×H → V ′. The definition is possible because

∣∣B(u, v)
∣∣2
V ′ =

∞∑

n=1

k−2
n

∣∣B(u, v)n

∣∣2 ≤ C∗

( ∞∑

n=1

|vn|2
)(

sup
n≥1

|un|2
)

≤ C∗

( ∞∑

n=1

|vn|2
)( ∞∑

n=1

|un|2
)

= C∗|u|2H |v|2H . (6)
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We also have 〈B(u, v), z〉V ′,V = −〈B(u, z), v〉H for all u,v ∈ H , z ∈ V by Lemma 1 and a
density argument.

Define H̃ = H × H , Ṽ = V × V and D(Ãα) = D(Aα) × D(Aα), for α ≥ 0. If x =
(x1, x1) ∈ H̃ and y = (y1, y2) ∈ H̃ , we define the scalar product in H̃ as

〈x, y〉H̃ = 〈x1, y1〉H + 〈x2, y2〉H
and the norms in H̃ and Ṽ as

|x|2
H̃

= |x1|2H + |x2|2H , x = (x1, x2) ∈ H̃

‖x‖2
Ṽ

= ‖x1‖2
V + ‖x2‖2

V , x = (x1, x2) ∈ Ṽ .

Moreover, define the linear operator Ã : D(Ã) ⊂ H̃ → H̃ , or also Ã : Ṽ → Ṽ ′, as Ãx =
(Ax1,Ax2) and, for every λ ∈ R, define the bilinear continuous operator B̃λ from Ṽ × H̃ to
H̃ or from H̃ × Ṽ to H̃ as

B̃λ(x, y) = (B(x1, y1) + λB(x2, y1),B(x1, y2) + λB(x2, y2)
)
,

where as usual we have used the notation x = (x1, x2), y = (y1, y2). The main properties of
the operator B̃λ are listed in the following lemma, whose proof is an easy consequence of
Lemma 1.

Lemma 2 There is a constant C > 0 such that

∣
∣B̃λ(u, v)

∣
∣
H̃

≤ C‖u‖Ṽ |v|H̃ , for every u ∈ Ṽ , v ∈ H̃ ,

and

∣∣B̃λ(u, v)
∣∣
H̃

≤ C‖v‖Ṽ |u|H̃ , for every v ∈ Ṽ , u ∈ H̃ .

Moreover,

〈
B̃λ(u, v), v

〉
H̃

= 0 for all u ∈ Ṽ , v ∈ H̃ or v ∈ Ṽ , u ∈ H̃ .

2.2 Well-Posedness, Stochastic Flow and Pathwise Version in λ

Let (σn) be a sequence of complex numbers such that

∑
k2ε

n |σn|2 < ∞ (7)

for some ε > 0. This is a standing assumption for the sequel.
Let 
 be the space of continuous functions from R to H , null at zero, endowed with the

metric of uniform convergence on compact sets. Let F be the Borel σ -field associated with

. Denote by (W(t))t∈R the canonical process defined on 
 as W(t,ω) = ω(t), for every
ω ∈ 
. Let P be a probability measure on (
, F ) such that (W(t))t≥0 and (W(−t))t≥0 are
P -a.s. two independent Brownian motions in H with the same covariance. We call P a
two sided Wiener probability measure and (W(t))t∈R a two sided Brownian motion. Such
objects exist, for every given covariance operator, and play an important role in the theory of
random dynamical systems, see [3]. Details on infinite-dimensional Brownian motions and
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their stochastic integration can be found in [19]. We will also denote by E the expectation
on (
, F ,P ).

For simplicity of the computations, and in analogy with equation (1), we assume that the
components (Wn(t))t∈R, for all n ≥ 1, of the two-sided Brownian motion have the form

Wn(t) = σnβn(t)

where βn(t) are independent two-sided complex Brownian motions on (
, F ,P ) (with in-
cremental covariance equal to one) and (σn) is the sequence given above.

On the probability space (
, F ,P ) consider the family of transformations {θt : 
 �→

, t ∈ R} defined as θtω = ω(t + ·) − ω(t), for every ω ∈ 
. They are measure preserving
and ergodic with respect to P , and satisfy θ0 = Id , θt+s = θt ◦ θs, for s, t ∈ R, see [3].

Let (Ft )t∈R be the filtration associated to (W(t))t∈R (Ft is generated by W(s) for all
s ≤ t ).

Given initial conditions u0,w0 ∈ H , let us first rewrite system (5) in the abstract form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

duλ = [−νAuλ − B
(
uλ,uλ

)− λB
(
wλ,uλ

)]
dt + dW

dwλ = [−νAwλ − B
(
uλ,wλ

)− λB
(
wλ,wλ

)]
dt + dW

uλ(0) = u0

wλ(0) = w0.

(8)

We consider the above Cauchy problem on [0,∞). Using the notation of the previous
section, system (8) can be rewritten as follows

dũλ + (νÃũλ + B̃λ

(
ũλ, ũλ

))
dt = dW̃ , ũλ(0) = ũ0 (9)

where ũλ(t) = (uλ(t),wλ(t)), ũ0 = (u0,w0), W̃ (t) = (W(t),W(t)). As an introductory step,
let us first give the usual definition of solution of (9); however, we will eventually need a
more refined notion of solution, that we will introduce in Definition 4 below.

Definition 3 Given ũ0 ∈ H̃ , we say that a stochastic process ũλ(t,ω) is a solution of (9) if
it is a continuous adapted process in H̃ on (
, F , (Ft )t≥0,P ) and, for P -a.e. ω ∈ 
,

ũλ(·,ω) ∈ C
([0, T ]; H̃ )∩ L2(0, T ; Ṽ ) for all T > 0

〈
ũλ(t,ω),ψ

〉
H̃

+
∫ t

0
ν
〈
ũλ(s,ω), Ãψ

〉
Ṽ ,Ṽ ′ ds

+
∫ t

0

〈
B̃λ

(
ũλ(s,ω), ũλ(s,ω)

)
,ψ
〉
H̃

ds = 〈ũ0,ψ〉H̃ + 〈W̃ (t,ω),ψ
〉
H̃

for t ≥ and ψ ∈ Ṽ .

Notice that ũλ(s,ω) ∈ Ṽ for a.e. s ≥ 0, hence the integral of the bilinear term is well
defined.

The above definition is sufficient to analyze individual solutions, but the theory of random
attractors requires the concept of stochastic flow: the P -negligible set where the properties
of the above definition may not hold, that is, it must be independent of ũ0, and for P -
a.e. ω ∈ 
, moreover, we will also need continuity with respect to the initial value ũ0. In
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addition, here, we want to “vary” the parameter λ independently of ω: a priori this is not
possible, again because the P -negligible set where the properties of the previous definition
hold, may depend on λ. Both problems can be solved because it is possible to perform
a complete pathwise analysis of the equation. Let us, therefore, give a more appropriate
definition of solution for (9), which is relevant to the above mentioned issues.

Definition 4 A stochastic flow depending on λ ∈ R, associated with (9), is a family of
mappings {ϕλ(t,ω) : H̃ → H̃ ; t ≥ 0, ω ∈ 
0, λ ∈ R}, where 
0 ∈ F is θt -invariant and
P (
0) = 1, with the properties:

1. for every λ ∈ R and ũ0 ∈ H̃ , (t,ω) �→ ϕλ(t,ω)ũ0 (arbitrarily extended to all ω ∈ 
) is a
continuous adapted process in H̃ on (
, F , (Ft )t≥0,P ) and for every ω ∈ 
0 we have

ϕλ(·,ω)ũ0 ∈ C
([0, T ]; H̃ )∩ L2(0, T ; Ṽ ), for all T > 0,

and

〈
ϕλ(t,ω)ũ0,ψ

〉
H̃

+
∫ t

0
ν
〈
ϕλ(s,ω)ũ0, Ãψ

〉
Ṽ ,Ṽ ′ ds

+
∫ t

0

〈
B̃λ

(
ϕλ(s,ω)ũ0, ϕ

λ(s,ω)ũ0

)
,ψ
〉
H̃

ds = 〈ũ0,ψ〉H̃ + 〈W̃ (t,ω),ψ
〉
H̃

for t ≥ 0 and ψ ∈ Ṽ ;
2. for every λ ∈ R and ω ∈ 
0, ϕλ(t,ω) is a continuous map from H̃ into itself, for all

t ≥ 0; and

ϕλ(t + s,ω) = ϕλ(t, θsω) ◦ ϕλ(s,ω) for all t, s ≥ 0.

To emphasize the role of 
0 in Definition 4, we will consider stochastic flows depending
on λ ∈ R, defined on the set 
0.

We have the following result. The concept of uniqueness of stochastic flow depending on
λ means: if we have two stochastic flows, defined on two sets 
0

1 and 
0
2, then they coincide

on a set 
0
3 ∈ F such that P (
0

3) = 1.

Theorem 5 Under assumption (7), there exists a unique stochastic flow depending on λ ∈ R,
in the sense of Definition 4, associated with (9).

Proof

Step 1 (preliminary facts). Denote by e−νÃt the analytic semigroup generated by Ã (see,
e.g., [33]). By the general theory of analytic semigroups or by explicit computation based
on the spectral representation, for every α > 0 we have |Ãαe−νÃt |H̃ ≤ Cα

tα
for some constant

Cα > 0. Moreover, notice that ‖x‖Ṽ = ‖Ã1/2x‖H̃ for all x ∈ Ṽ .
The process Ãε/2W̃ (t) has H -components (Aε/2W(t),Aε/2W(t)) where Aε/2W(t) has

complex components kε
nσnβn(t). Thanks to assumption (7) it follows that Ãε/2W̃ (t) is an

H̃ -valued Brownian motion. Thus it is γ -Hölder continuous, with respect to t , in H̃ , for
every exponent γ < 1

2 , see [19]. This means that there exists a set 
0
W ∈ F such that

P (
0
W) = 1 and Ãε/2W̃ (t,ω) is γ -Hölder continuous for every exponent γ < 1

2 , for every
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ω ∈ 
0
W . The set 
0

W is θt -invariant, because Hölder continuity is preserved by transla-
tion.

Step 2 (auxiliary Stokes type problem). The pathwise analysis of (9) requires a careful
analysis of an auxiliary process. The process we are going to introduce is usually defined as

z̃(t) =
∫ t

0
e−νÃ(t−s) dW̃ (s),

but from this definition via a stochastic integral (which is a P -equivalence class) it is less
easy to justify the θt -invariance of certain properties, on a full measure set 
0. For this
reason we adopt the following less intuitive definition. See [23] for further details on this
approach.

Let ω ∈ 
0
W be given throughout this step, where 
0

W has been defined in step 1. The
function t �→ z̃(t,ω) given by

z̃(t,ω) = e−νÃt W̃ (t,ω) +
∫ t

0
νÃe−νÃ(t−s)

(
W̃ (t,ω) − W̃ (s,ω)

)
ds, (10)

is well defined and bounded in Ṽ , because (for ε that is given in assumption (7)) we have

∥∥e−νÃt W̃ (t,ω)
∥∥

Ṽ
= ∣∣Ã1/2−ε/2e−νÃt Ãε/2

(
W̃ (t,ω) − W̃ (0,ω)

)∣∣
H̃

≤ ∣∣Ã1/2−ε/2e−νÃt
∣
∣
H̃

∣
∣Ãε/2

(
W̃ (t,ω) − W̃ (0,ω)

)∣∣
H̃

≤ C
1

t1/2−ε/2
tβ ,

for every β < 1
2 and a suitable constant C > 0 that depends on β and ω. Observe that in

the last estimate we used the details described in step 1 above, in particular, the Hölder
continuity. Similarly

∥∥
∥∥

∫ t

0
Ãe−νÃ(t−s)

(
W̃ (t,ω) − W̃ (s,ω)

)
ds

∥∥
∥∥

Ṽ

≤
∫ t

0

∣∣Ã3/2−ε/2e−νÃ(t−s)Ãε/2
(
W̃ (t,ω) − W̃ (s,ω)

)∣∣
H̃

ds

≤
∫ t

0
C

1

(t − s)3/2−ε/2
(t − s)β ds.

The above estimates imply that ‖z̃(t,ω)‖Ṽ is bounded on the interval [0, T ], for all T > 0
given, and the bound depends on T and ω.

It is easy to deduce that

〈
z̃(t,ω),ψ

〉
H̃

+
∫ t

0
ν
〈
z̃(s,ω), Ãψ

〉
Ṽ ,Ṽ ′ ds = 〈W̃ (t,ω),ψ

〉
H̃

(11)

for all t ≥ 0 and ψ ∈ Ṽ .
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Step 3 (auxiliary Navier–Stokes type random equation). Let ω ∈ 
0
W be given, and let

z̃(t,ω)) satisfy (10) or (11). Let us introduce the auxiliary random differential equation

dṽλ(t,ω)

dt
+ νÃṽλ(t,ω) + B̃λ

(
ṽλ(t,ω) + z̃(t,ω), ṽλ(t,ω) + z̃(t,ω)

)= 0 (12)

for t ≥ 0 and ṽλ(0,ω) = ũ0.
For every ω ∈ 
0

W and λ ∈ R, there exists a unique weak solution ṽλ(·,ω) = ṽλ(·,ω, ũ0)

of (12) (the definition of weak solutions is similar to Definition 4) and it depends continu-
ously, in C([0, T ]; H̃ ) ∩ L2(0, T ; Ṽ ) norms, for any given T > 0, on the initial condition
ũ0 in H̃ . A full rigorous proof of this statement is very long, but at the same time it is very
classical. Similar detailed proofs are given, for instance in [4, 22], and in [11] or [34] in
the case of the classical Navier–Stokes equations (i.e., when z̃ = 0). The rigorous detailed
proof is based on the Galerkin approximation procedure and then passing to the limit using
the appropriate compactness theorems. These classical computations can be found in the
above references. Moreover, similar computations will be performed in the second part of
the paper for the existence of the random attractor.

Step 4 (existence of the stochastic flow). For every λ ∈ R, t ≥ 0, ω ∈ 
0
W and ũ0 ∈ H̃ , define

ϕλ(t,ω)ũ0 = ṽλ(t,ω, ũ0) + z̃(t,ω)

where ṽλ(·,ω, ũ0) is the unique weak solution given in step 3 and z̃(·,ω) is defined in
step 2. The set 
0

W is θt -invariant and P (
0
W) = 1. Property 1 of Definition 4 is a direct

consequence of the analogous properties of ṽλ(·,ω, ũ0) and z̃(·,ω) proved in steps 2 and 3.
As to property 2 of Definition 4, given λ ∈ R, ω ∈ 
0

W , t ≥ 0, the continuity of ϕλ(t,ω)

in H̃ is a consequence of the continuous dependence of ṽλ(·,ω, ũ0) on ũ0, see step 3. The
property

ϕλ(t + s,ω)ũ0 = ϕλ(t, θsω)ϕλ(s,ω)ũ0 (13)

for all t, s ≥ 0 follows from the uniqueness statement of step 3 and the following property
of the process W̃ (t,ω) = (W(t,ω),W(t,ω)), W(t,ω) = ω(t),

W(t, θsω) = θsω(t) = ω(s + t) − ω(s) = W(s + t,ω) − W(s,ω).

Step 5 (uniqueness of the stochastic flow). Let ϕλ
1 (t,ω) be a stochastic flow depending on

λ ∈ R, associated with (9), defined on a θt -invariant full measure set 
0
1. Consider the θt -

invariant full measure set 
0
W described in step 2 above. The set 
0

1 ∩
0
W is θt -invariant and

P (
0
1 ∩ 
0

W) = 1. For all ω ∈ 
0
1 ∩ 
0

W define

ṽλ
1 (t,ω, ũ0) := ϕλ

1 (t,ω)ũ0 − z̃(t,ω).

From the properties of ϕλ
1 and z̃ it is trivial to check that ṽλ

1 (·,ω, ũ0) is a weak solution
of the auxiliary equation of step 3. Of course we have ϕλ

1 (t,ω)ũ0 = ṽλ
1 (t,ω, ũ0) + z̃(t,ω).

Now, let ϕλ
2 (t,ω) be another stochastic flow depending on λ ∈ R, associated with (9), with

its θt -invariant full measure set 
0
2. The function

ṽλ
2 (t,ω, ũ0) := ϕλ

2 (t,ω)ũ0 − z̃(t,ω)
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defined for ω ∈ 
0
2 ∩
0

W is a weak solution of the auxiliary equation of step 3. Thus, for ω ∈

0

1 ∩ 
0
2 ∩ 
0

W we have ṽλ
1 (t,ω, ũ0) = ṽλ

2 (t,ω, ũ0) because of the uniqueness of solutions
for (12), for every ω ∈ 
0

W . Hence, ϕλ
1 (t,ω)ũ0 = ϕλ

2 (t,ω)ũ0 for all ω ∈ 
0
1 ∩
0

2 ∩
0
W . Since

P (
0
1 ∩ 
0

2 ∩ 
0
W) = 1, the proof is complete. �

In step 5 of the previous proof we have obtained also the following representation result,
which will be useful in the next section.

Corollary 6 Let ϕλ(t,ω) be a stochastic flow depending on λ ∈ R, associated with (9),
defined on a θt -invariant full measure set 
0

1. On the θt -invariant full measure set 
0
W de-

scribed in step 2 of Theorem 5, one can define the functions z̃(t,ω) and ṽλ(t,ω, ũ0) accord-
ing to steps 2 and 3 of that proof. Then, on the θt -invariant full measure set 
0 := 
0

1 ∩ 
0
W

we have

ϕλ(t,ω)ũ0 = ṽλ(t,ω, ũ0) + z̃(t,ω).

2.3 Continuous Dependence with Respect to the Parameter λ

As above, we assume condition (7). The uniformity in the initial condition of the next state-
ment will be used to prove the upper semicontinuity of the random attractor with respect to
the parameter λ.

Theorem 7 Let ϕλ(t,ω) be the stochastic flow that was established in Theorem 5 and Corol-
lary 6, associated with (9) and depending on the parameter λ ∈ R. Let 
0 ∈ F , P (
0) = 1,
be a θt -invariant set where all the properties of Definition 4 and Corollary 6 hold true. Then,
for every ω ∈ 
0, we have

lim
λ→λ0

sup
ũ0∈B

sup
0≤t≤T

∣∣ϕλ(t,ω)ũ0 − ϕλ0(t,ω)ũ0

∣∣
H̃

= 0

for all T > 0, λ0 ∈ R and all bounded sets B ⊂ H̃ .

Proof We prove the theorem only in the case λ0 = 0, the general case being the same. The
elements ω ∈ 
0 and T > 0 are given and fixed throughout the proof, as well as the bounded
set B ⊂ H̃ .

Step 1 (preparation). Denote by (uλ(t,ω, ũ0),w
λ(t,ω, ũ0)) the decomposition of ϕλ(t,ω)ũ0

in H̃ = H × H , and by (u0,w0) the decomposition of the initial value ũ0. Where it is nec-
essary, we will shorten the notation and write (uλ(t),wλ(t)) and apply analogous change of
notation to other similar quantities.

From the weak integral equation in Definition 4 and the definitions of Ã and B̃λ we have

〈
uλ(t),ψ1

〉
H

+
∫ t

0
ν
〈
uλ(s),Aψ1

〉
V,V ′ ds

+
∫ t

0

〈
B
(
uλ(s), uλ(s)

)+ λB
(
wλ(s), uλ(s)

)
,ψ1

〉
H

ds

= 〈u0,ψ1〉H + 〈W(t,ω),ψ1
〉
H

,
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for all t ≥ 0 and ψ1 ∈ V and

〈
wλ(t),ψ2

〉
H

+
∫ t

0
ν
〈
wλ(s),Aψ2

〉
V,V ′ ds

+
∫ t

0

〈
B
(
uλ(s),wλ(s)

)+ λB
(
wλ(s),wλ(s)

)
,ψ2
〉
H

ds

= 〈w0,ψ2〉H + 〈W(t,ω),ψ2

〉
H

,

for all t ≥ 0 and ψ2 ∈ V . Let us define the new function

qλ(t,ω, ũ0) := uλ(t,ω, ũ0) + λwλ(t,ω, ũ0)

and the corresponding difference

ρλ(t,ω, ũ0) := qλ(t,ω, ũ0) − q0(t,ω, ũ0) = qλ(t,ω, ũ0) − u0(t,ω, ũ0).

The above quantities are solutions, respectively, of

〈
qλ(t),ψ1

〉
H

+
∫ t

0
ν
〈
qλ(s),Aψ1

〉
V,V ′ ds +

∫ t

0

〈
B
(
qλ(s), qλ(s)

)
,ψ1

〉
H

ds

= 〈u0 + λw0,ψ1〉H + (1 + λ)
〈
W(t,ω),ψ1

〉
H

,

for t ≥ 0 and ψ1 ∈ V , and

〈
ρλ(t),ψ2

〉
H

+
∫ t

0
ν
〈
ρλ(s),Aψ2

〉
V,V ′ ds

+
∫ t

0

〈
B
(
qλ(s), ρλ(s)

)+ B
(
ρλ(s), qλ(s)

)− B
(
ρλ(s), ρλ(s)

)
,ψ2

〉
H

ds

= 〈λw0,ψ2〉H + λ
〈
W(t,ω),ψ2

〉
H

,

for t ≥ 0 and ψ2 ∈ V .

Step 2 (bound on qλ). Let us prove next that

sup
λ∈[−1,1]

sup
ũ0∈B

sup
0≤t≤T

∣∣qλ(t,ω, ũ0)
∣∣
H

< ∞.

Define

vλ(t,ω, ũ0) := qλ(t,ω, ũ0) − (1 + λ)z(t,ω),

where z(t,ω) is any one of the two equal components of z̃(t,ω) given in Corollary 6. We
have

〈
vλ(t),ψ1

〉
H

+
∫ t

0
ν
〈
vλ(s),Aψ1

〉
V,V ′ ds

+
∫ t

0

〈
B
(
vλ(s) + (1 + λ)z(s), vλ(s) + (1 + λ)z(s)

)
,ψ1
〉
H

ds

= 〈u0 + λw0,ψ1〉H ,
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for all t ≥ 0 and ψ1 ∈ V . Formally, this implies

1

2

d

dt

∣
∣vλ
∣
∣2
H

+ ν
∥
∥vλ
∥
∥2

V
≤ ∣∣〈B(vλ + (1 + λ)z, vλ + (1 + λ)z

)
, vλ
〉
H

∣
∣,

and thus

1

2

∣
∣vλ(t)

∣
∣2
H

+ ν

∫ t

0

∥
∥vλ(s)

∥
∥2

V
ds ≤ 1

2
|u0 + λw0|2H

+
∫ t

0

∣
∣〈B
(
vλ(s) + (1 + λ)z(s), vλ(s) + (1 + λ)z(s)

)
, vλ(s)

〉
H

∣
∣ds.

Rigorously, the above inequality can be proved either by general abstract theorems (see
[34]) or by taking finite-dimensional (i.e. with finite many components) test functions ψ1,
performing the computations at the finite dimensional level and then taking the limit, which
can be justified because the map

s �→ 〈
B
(
vλ(s) + (1 + λ)z(s), vλ(s) + (1 + λ)z(s)

)
, vλ(s)

〉
H

is integrable. Thus, from Lemma 2 and the bounds on z(t,ω), given in step 2 of the proof of
Theorem 5, we have, for t ∈ [0, T ],

1

2

∣
∣vλ(t)

∣
∣2
H

+ ν

∫ t

0

∥
∥vλ(s)

∥
∥2

V
ds − 1

2
|u0 + λw0|2H

≤ 2
∫ t

0

∣
∣〈B
(
vλ(s) + (1 + λ)z(s), z(s)

)
, vλ(s)

〉
H

∣
∣ds

≤ C

∫ t

0

∣
∣vλ(s)

∣
∣
H

∣
∣vλ(s) + (1 + λ)z(s)

∣
∣
H

∥
∥z(s)

∥
∥

V
ds

≤ C(ω)

∫ t

0

∣
∣vλ(s)

∣
∣
H

(∣∣vλ(s)
∣
∣
H

+ C(ω)
)
ds,

where C(ω) depends on the bounds of the relevant norms of z(·,ω) over the interval [0, T ],
which in principle is also depending on T . By Gronwall lemma we deduce

∣
∣vλ(t,ω, ũ0)

∣
∣
H

≤ C(ω) · ∣∣vλ(0,ω, ũ0)
∣
∣
H

on [0, T ], for a new constant C(ω). This implies

∣∣qλ(t,ω, ũ0)
∣∣
H

≤ 2
∣∣z(t,ω)

∣∣
H

+ C(ω) · |u0 + λw0|H ,

on [0, T ], and the claim of this step is proved, using again the bounds on z(·,ω) over the
interval [0, T ].

Step 3 (convergence of ρλ). Next we prove that

lim
λ→0

sup
ũ0∈B

sup
0≤t≤T

∣
∣ρλ(t,ω, ũ0)

∣
∣
H

= 0.
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In one sentence, this is a consequence of the various bounds, that we have established pre-
viously, and the fact that the initial condition λw0 and the forcing term λW(t,ω) converge
to zero, as λ → 0. Define

v̂λ(t,ω, ũ0) := ρλ(t,ω, ũ0) − λz(t,ω),

it satisfies

〈
v̂λ(t),ψ2

〉
H

+
∫ t

0
ν
〈
v̂λ(s),Aψ2

〉
V,V ′ ds

+
∫ t

0

〈
B
(
qλ(s), ρλ(s)

)+ B
(
ρλ(s), qλ(s)

)− B
(
ρλ(s), ρλ(s)

)
,ψ2
〉
H

ds

= 〈λw0,ψ2〉H ,

for all t ≥ 0 and ψ2 ∈ V . By virtue of Lemmas 1 and 2, we have
∣
∣〈B
(
qλ,ρλ

)
, v̂λ
〉
H

∣
∣= ∣∣〈B(qλ,λz

)
, v̂λ
〉
H

∣
∣≤ C|λ|‖z‖V

∣
∣qλ
∣
∣
H

∣
∣v̂λ
∣
∣
H

.

Thus, using both the bound on z(·,ω) on [0, T ] and the bound of the previous step, there is
constant C1(ω) such that

∣∣〈B
(
qλ,ρλ

)
, v̂λ
〉
H

∣∣≤ λ2C1(ω) + ∣∣v̂λ
∣∣2
H

,

for all ũ0 ∈ B and t ∈ [0, T ]. Similarly,
∣∣〈B
(
ρλ, qλ

)
, v̂λ
〉
H

∣∣ = ∣∣〈B(v̂λ + λz, v̂λ
)
, qλ
〉
H

∣∣≤ C
∥∥v̂λ
∥∥

V

∣∣qλ
∣∣
H

(∣∣v̂λ
∣∣
H

+ |λ||z|H
)

≤ ν

2

∥∥v̂λ
∥∥2

V
+ C2(ω)

∣∣v̂λ
∣∣2
H

+ λ2

ν
C2(ω),

for some constant C2(ω), and
∣
∣〈B
(
ρλ,ρλ

)
, v̂λ
〉
H

∣
∣

= ∣∣〈B(v̂λ + λz,λz
)
, v̂λ
〉
H

∣
∣≤ C|λ|‖z‖V

∣
∣v̂λ
∣
∣
H

(∣∣v̂λ
∣
∣
H

+ |λ||z|H
)

≤ |λ|C3(ω)
∣∣v̂λ
∣∣
H

(∣∣v̂λ
∣∣
H

+ |λ|C3(ω)
)≤ |λ|C3(ω)

∣∣v̂λ
∣∣2
H

+ |λ|3C3(ω),

for some constant C3(ω). Hence, from the equation in weak form for v̂λ (and similarly to
the proof of step 2 above) we deduce, for λ ∈ [−1,1],

1

2

∣
∣v̂λ(t)

∣
∣2
H

+ ν

2

∫ t

0

∥
∥v̂λ(s)

∥
∥2

V
ds

≤ 1

2
|λw0|2H +

∫ t

0

(
C4(ω)

∣
∣v̂λ(s)

∣
∣2
H

+ λ2

(
1 + 1

ν

)
C4(ω)

)
ds,

for some constant C4(ω). By Gronwall lemma we get

lim
λ→0

sup
ũ0∈B

sup
0≤t≤T

∣
∣v̂λ(t,ω, ũ0)

∣
∣
H

= 0,

which implies the claim of this step.
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Step 4 (convergence of wλ). With the notation ξλ(t,ω, ũ0) := wλ(t,ω, ũ0) − w0(t,ω, ũ0),
let us prove that

lim
λ→0

sup
ũ0∈B

sup
0≤t≤T

∣
∣ξλ(t,ω, ũ0)

∣
∣
H

= 0.

We have

〈
ξλ(t),ψ

〉
H

+
∫ t

0
ν
〈
ξλ(s),Aψ

〉
V,V ′ ds =

∫ t

0

〈
B
(
u0(s),w0(s)

)
,ψ
〉
H

ds

−
∫ t

0

〈
B
(
uλ(s),wλ(s)

)+ λB
(
wλ(s),wλ(s)

)
,ψ
〉
H

ds

=
∫ t

0

〈
B
(
q0(s),w0(s)

)
,ψ
〉
H

ds −
∫ t

0

〈
B
(
qλ(s),wλ(s)

)
,ψ
〉
H

ds

= −
∫ t

0

〈
B
(
ρλ(s),w0(s)

)
,ψ
〉
H

ds −
∫ t

0

〈
B
(
qλ(s), ξλ(s)

)
,ψ
〉
H

ds,

for all t ≥ 0 and ψ ∈ V . As in the previous steps we deduce that

1

2

∣
∣ξλ(t)

∣
∣2
H

+ ν

∫ t

0

∥
∥ξλ(s)

∥
∥2

V
ds

≤
∫ t

0

∣
∣〈B
(
ρλ(s),w0(s)

)
, ξλ(s)

〉
H

∣
∣ds +

∫ t

0

∣
∣〈B
(
qλ(s), ξλ(s)

)
, ξλ(s)

〉
H

∣
∣ds

≤ C

∫ t

0

∣
∣w0(s)

∣
∣
H

∥
∥ξλ(s)

∥
∥

V

∣
∣ρλ(s)

∣
∣
H

ds.

Hence,

1

2

∣
∣ξλ(t)

∣
∣2
H

+ ν

2

∫ t

0

∥
∥ξλ(s)

∥
∥2

V
ds ≤ C

ν

∫ t

0

∣
∣w0(s)

∣
∣2
H

∣
∣ρλ(s)

∣
∣2
H

ds.

This implies the claim of this step.

Step 5 (convergence of uλ). We simply notice that
∣
∣uλ(t) − u0(t)

∣
∣
H

= ∣∣qλ(t) − q0(t) − λwλ(t)
∣
∣
H

,

therefore, by the results of steps 3 and 4, we have

lim
λ→0

sup
ũ0∈B

sup
0≤t≤T

∣
∣uλ(t,ω, ũ0) − u0(t,ω, ũ0)

∣
∣
H

= 0.

The proof is complete. �

3 Random Dynamical Systems

In this section we recall few definitions from the theory of random dynamical systems. For
general notions and results see [3], and see [9] for analogous concept for non-autonomous
dynamical systems. Here, we mainly refer to specific notions from [18]. Similar notions are
also given in [17].
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3.1 The Basic Set-up

Let (X,d) be a Polish space. Recall that the mapping ϕ of Definition 4 is called a random
dynamical system (RDS) on X over (
, F ,P , θt ).

Definition 8 A closed random set K is said to absorb the set B ⊂ X, B is fixed non-random,
if there exists a random variable tB(ω) such that, for P -a.e. ω ∈ 
,

ϕ(t, θ−tω)B ⊂ K(ω) for all t > tB(ω). (14)

The smallest tB(ω) ≥ 0 for which (14) holds is called the random absorption time of B by K .

Remark 9 Note that ϕ(t, θ−tω)x can be thought of as the position of the trajectory at time 0,
which was in x at time −t .

Definition 10 A random set A(ω) is called a random attractor associated with the random
dynamical system ϕ if, for P -a.e. ω ∈ 
, the following is satisfied:

1. A(ω) is a nonempty compact subset of X,
2. ϕ(t,ω)A(ω) = A(θtω), ∀t ≥ 0,
3. for every B ⊂ X bounded (and non-random)

lim
t→∞dH

(
ϕ(t, θ−tω)B, A(ω)

)= 0

The following theorem about the existence of random attractors is due to Crauel and
Flandoli [18].

Theorem 11 Suppose there exists a closed random set D which is absorbing every bounded
non-random set B ⊂ X, and for which D(ω) is a compact subset of X for P -a.e. ω ∈ 
.
Then, there exists a random attractor for ϕ.

Remark 12 In Crauel [16] it is shown that, under the ergodicity assumption on θt , there
exists a compact set K(ω) ⊂ X such that, for P -a.e. ω ∈ 
, the random attractor is the
ω-limit set of K(ω), that is,

A(ω) =
⋂

n≥0

⋃

t≥n

ϕ(t, θ−tω)K(ω).

3.2 Random Attractor Dimensionality

We are interested in the property of finite Hausdorff dimensionality of the random attractor.
The two most relevant results for this purpose are the works of Debussche [20, 21]. We apply
the result of the second one of these papers, based on a property called random squeezing
property, which was inspired by the squeezing property in the deterministic case that was
introduced in [26] (see, also, [15] and [31]). This property is also used in the proof of finite
number of determining modes see for e.g., [6, 25]. The fact that the random attractor is not
uniformly bounded makes the corresponding random squeezing property depend exponen-
tially on a random variable. However, an ergodic argument will make it possible to work
with this weaker property.



Stochastic Attractors for Shell Phenomenological Models of Turbulence 705

Definition 13 [20] Let H be a separable Hilbert space with norm |.|H , ϕ(t,ω) a random
dynamical system in H with random attractor A(ω). We say that ϕ(t,ω) satisfies the random
squeezing property if there exist a random variable C5(ω), a finite-dimensional projector �

in H , and positive numbers μ, δ such that, for P -a.e. ω ∈ 
,

∣
∣�ϕ(t,ω)u0 − �ϕ(t,ω)v0

∣
∣
H

≤ e
∫ t

0 C5(θsω)ds |u0 − v0|H (15)

and

∣∣(I − �)
(
ϕ(t,ω)u0 − ϕ(t,ω)v0

)∣∣
H

≤ (e−μt + δe
∫ t

0 C5(θsω)ds
)|u0 − v0|H (16)

for every t ≥ 0, and every u0, v0 ∈ A(ω).

Theorem 14 [20] There exist absolute constants K1,K2,K3 such that if ϕ(t,ω) is a random
dynamical system that satisfies:

(i) the random squeezing property, mentioned in Definition 13, with a random variable
C5(ω), a finite-dimensional projector � and two positive numbers μ, δ, and

(ii) the expected value with respect to the measure P

E
(
C5(ω)

)
< ∞, δ ≤ K1 and μ ≥ K2E

(
C5(ω)

)
,

then, for P -a.s. ω ∈ 
, the random attractor A(ω) of ϕ(t,ω) has finite Hausdorff di-
mension which is less than K3R(�) logR(�), where R(�) is the rank of the projec-
tor �.

4 Application to the Shell Model

In Theorem 5 we have constructed, for every λ ∈ R, a random dynamical system ϕλ(t,ω)

associated with (9). In this section we prove the existence of the random attractor associated
with ϕλ(t,ω). At the end of the section we also prove that the random attractor, as a function
of λ, is upper semi-continuous. For the upper semi-continuity of deterministic attractors with
respect to a parameter see, e.g., [30].

4.1 Auxiliary Problem

As in step 2 of Sect. 2.2, we will introduce an auxiliary Ornstein-Uhlenbeck process. This
is a slightly different process but will have mainly the same properties as the process intro-
duced in step 2 of Sect. 2.2. Following the steps of Sect. 2, let 
0

W ∈ F introduced in Sect. 2.
Let α > 0 be an arbitrary constant. For ω ∈ 
0

W , let

z̃α(t,ω) =
∫ t

−∞
(νÃ + αI)e−(νÃ+αI)(t−s)

(
W̃ (t,ω) − W̃ (s,ω)

)
ds (17)

which is well defined and bounded in Ṽ .
The process z̃α(t), t ∈ R is a Gaussian, stationary and ergodic process. Moreover, it is a

solution of the equation

dz̃α(t) = (−νÃ − α)z̃α(t) dt + dW̃ (t), (18)
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i.e. for all t ∈ R and P -a.s.

z̃α(t) =
∫ t

−∞
e−(νÃ+α)(t−s) dW̃ (s). (19)

Moreover,

E
∥∥z̃α(t)

∥∥2

Ṽ
= E

∣∣Ã1/2z̃α(t)
∣∣2
H̃

= E

∞∑

n=1

(
knz̃

α
n(t)
)2 =

∞∑

n=1

k2
nσ

2
n

2(νk2
n + α)

< ∞, (20)

by using the isometry formula for the Itô integral.
Furthermore, E‖z̃α(t)‖2

Ṽ
tends to 0, when α → ∞. In particular, there exists α∗(ν) > 0

such that

E
∥
∥z̃α(t)

∥
∥2

Ṽ
≤ k0ν

8C∗
for all α ≥ α∗, (21)

where C∗ is the constant in the inequality (6).

4.2 Absorbing Compact Set

Let ω ∈ 
0
W be given and let us introduce the random differential equation

dṽ(t,ω)

dt
+ νÃṽ(t,ω) = −B̃λ

(
ṽ(t,ω) + z̃α(t,ω), ṽ(t,ω) + z̃α(t,ω)

)+ αz̃α(t,ω). (22)

Notice that in fact ṽ depends on α, because z̃α depends on α. It is not difficult to prove,
using a Galerkin method, that for each ω ∈ 
0

W and t0 ∈ R, with ṽt0(ω) ∈ H̃ is given, there
exists a unique solution ṽ(t,ω) defined on [t0,∞) to (22) such that

ṽ(t0,ω) = ṽt0(ω), (23)

and such that ṽ(·,ω) ∈ C([t0,∞), H̃ )
⋂

L2((t0,∞), Ṽ ). We refer to [22] for more detailed
computations.

Let us define ϕλ(t,ω)ũt0 = ṽ(t,ω) + z̃α(t,ω), where ṽ is the solution of (22) with
ṽt0(ω) = ũt0(ω) − z̃α(t0,ω).

We would like to prove the existence of a compact absorbing set in H̃ at time t = 0.
Through this section we will take B to be a bounded set in H̃ , and that for any t0 ∈ R we
will assume ũ(t0) ∈ B; moreover, ṽ is the solution of (22) and (23) with ṽt0(ω) = ũ(t0,ω) −
z̃α(t0,ω).

Let t0 < −1 and t ∈ [−1,0].

Lemma 15 Let ṽt0 ∈ H̃ and ṽ be a solution of (22) associated with the initial condition ṽt0 .
Then, for all t0 < −1 and for all t ∈ [−1,0]

∣
∣ṽ(t)

∣
∣2
H̃

≤ ∣∣ṽ(t0)
∣
∣2
H̃

e
∫ t
t0

(2C∗‖z̃α(s)‖
Ṽ

− k0ν

2 ) ds +
∫ t

t0

f (s)e
∫ t
s (2C∗‖z̃α (r)‖

Ṽ
− k0ν

2 ) dr ds, (24)
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where

f (t) := 4C2∗
ν

∣
∣z̃α(t)

∣
∣4
H̃

+ 8α2

k0ν

∣
∣z̃α(t)

∣
∣2
H̃

,

and C∗ is the constant in the inequality (6).

Proof As before, the proof is formal and can be made rigorous by applying the Galerkin
approximation procedure. Let us take the inner produce in H̃ of (22) with ṽ to obtain

〈
dṽ

dt
, ṽ

〉
+ ν〈Ãṽ, ṽ〉 = −〈B̃λ

(
ṽ + z̃α, ṽ + z̃α

)
, ṽ
〉+ α

〈
z̃α, ṽ

〉
.

Using Lemma 2, inequality (6) and Young’s inequality, we estimate the right-hand side of
the above and get

∣
∣〈B̃λ(ṽ + z̃α, ṽ + z̃α, ṽ

〉∣∣ = ∣∣−B̃λ(ṽ, ṽ), z̃α〉 − B̃λ

(
z̃α, ṽ

)
, z̃α〉∣∣

≤ ∥∥B̃λ(ṽ, ṽ)
∥
∥

Ṽ ′
∥
∥z̃α
∥
∥

Ṽ
+ ∣∣B̃λ

(
z̃α, ṽ

)∣∣
H̃

∣
∣z̃α
∣
∣
H̃

≤ C∗
(|ṽ|2

H̃

∥
∥z̃α
∥
∥

Ṽ
+ ‖ṽ‖Ṽ

∣
∣z̃α
∣
∣2
H̃

)

≤ C∗|ṽ|2
H̃

∥
∥z̃α
∥
∥

Ṽ
+ ν

2
‖ṽ‖2

Ṽ
+ 2C2∗

ν

∣
∣z̃α
∣
∣4
H̃

. (25)

For the other term we apply the Cauchy-Schwarz and Young’s inequalities we have

∣
∣α
〈
z̃α, ṽ

〉∣∣≤ α
∣
∣z̃α
∣
∣
H̃

|ṽ|H̃ ≤ k0ν

4
|ṽ|2

H̃
+ 4α2

k0ν

∣
∣z̃α
∣
∣2
H̃

. (26)

Hence, we get that

1

2

d

dt
|ṽ|2

H̃
+ ν

2
‖ṽ‖2

Ṽ
≤ C∗|ṽ|2

H̃

∥
∥z̃α
∥
∥

Ṽ
+ 2C2∗

ν
|z̃α|4

H̃
+ k0ν

4
|ṽ|2

H̃
+ 4α2

k0ν

∣
∣z̃α
∣
∣2
H̃

. (27)

Using the Poincaré-like inequality ν‖ṽ‖2
Ṽ

≥ νk0|ṽ|2
H̃

, we get

d

dt
|ṽ|2

H̃
≤ 2C∗|ṽ|2

H̃

∥∥z̃α
∥∥

Ṽ
+ 4C2∗

ν

∣∣z̃α
∣∣4
H̃

− k0ν

2
|ṽ|2

H̃
+ 8α2

k0ν

∣∣z̃α
∣∣2
H̃

.

We integrate over (t0, t) and get

∣∣ṽ(t)
∣∣2
H̃

≤ ∣∣ṽ(t0)
∣∣2
H̃

+
∫ t

t0

(
2C∗
∥∥z̃α(r)

∥∥
Ṽ

− k0ν

2

)∣∣ṽ(r)
∣∣2
H̃

dr +
∫ t

t0

f (r) dr.

Using Gronwall Lemma we get the result. �
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Lemma 16 Let α ≥ α∗(ν), such that (21) holds. Suppose that the assumptions of Lemma 15
are satisfied, and let f be given by Lemma 15. Let

Rt
1(ω) := 1 +

∫ t

−∞
f (s)e

∫ t
s (2C∗‖z̃α(r)‖

Ṽ
− k0ν

2 ) dr ds

then, the ball B(0,R0
1(ω)) ⊂ H̃ is an absorbing set at time t ∈ [−1,0], for the system (22).

Notice that in principle Rt
1(ω) depends on α, however, if we fix α = α0 := 2α∗(ν)

(see (21)) then Rt
1(ω) will depend only on ν and the statement will still be valid.

Proof Using the ergodicity of the process z̃α we have that

− 1

t0

∫ 0

t0

‖z̃α(s)‖Ṽ ds →t0→−∞ E‖z̃α(0)‖Ṽ , P -a.s.

Hence, there exists s0(ω) < 0 such that for every t0 ≤ s0(ω),

− 1

t0

∫ 0

t0

∥
∥z̃α(s)

∥
∥

Ṽ
ds ≤ 2E

∥
∥z̃α(0)

∥
∥

Ṽ
. (28)

Then,

exp

(
t0

(
k0ν

2
+ 1

t0

∫ 0

t0

2C∗
∥∥z̃α(s)

∥∥
Ṽ

ds

))
≤ exp

(
t0

(
k0ν

2
− 2C∗E

∥∥z̃α(0)
∥∥

Ṽ

))
.

Moreover, thanks to (20) and (21) we have for all α ≥ α∗

E
∥
∥z̃α(0)

∥
∥

Ṽ
<

k0ν

8C∗
. (29)

Hence, for every t0 ≤ s0(ω) and α ≥ α∗ one has

exp

(
t0

(
k0ν

2
+ 1

t0

∫ 0

t0

2C∗
∥
∥z̃α(s)

∥
∥

Ṽ
ds

))
≤ exp

(
t0

k0ν

8C∗

)
.

In addition, see [22] for more details, one can easily prove that there exists an a.s. finite
random constant C7(ω) such that

∣
∣z̃α(t)

∣
∣
H̃

≤ C7(ω)|t |, for all t ≤ −1. (30)

Let us assume that the bounded ball B ⊂ H̃ is inside a ball of radius ρ1, then
∣∣ũ(t0)

∣∣
H̃

≤ ρ1, for all t0 ≤ 0.

Hence, for every t0 ≤ s0(ω) and α ≥ α∗

∣
∣ṽ(t)

∣
∣2
H̃

≤ ∣∣ũ(t0)
∣
∣2
H̃

exp

(
t0

k0ν

8C∗

)
+ ∣∣z̃α(t0)

∣
∣2
H̃

exp

(
t0

k0ν

8C∗

)

+
∫ t

t0

f (s)e
∫ t
s (2C∗‖z̃α(r)‖

Ṽ
− k0ν

2 ) dr ds
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≤ (ρ2
1 + C2

7 (ω)|t0|2
)

exp

(
t0

k0ν

8C∗

)

+
∫ t

−∞
f (s)e

∫ t
s (2C∗‖z̃α (r)‖

Ṽ
− k0ν

2 ) dr ds

Now choose s1(ω) < 0 such that (ρ2
1 + C2

7 (ω)|t0|2) exp(t0
k0ν

8C∗ ) ≤ 1, for all t0 ≤ s1(ω), and
let us denote by tB(ω) = min{s0(ω), s1(ω)}, then we get that the integral inside Rt

1(ω) is a.s.
convergent and that for every t ≤ tB(ω)

∣
∣ṽ(t)

∣
∣2
H̃

≤ Rt
1(ω).

Hence, the ball B(0,Rt
1(ω)) is an absorbing ball at time t . This completes the proof. �

Lemma 17 Suppose that the assumptions of Lemma 15 are satisfied, and assume that α ≥
α∗ and |s0(ω)| is large enough such that (29) and (28) hold, respectively. In addition, assume
that ṽt0 ∈ Ṽ , then for every t0 ≤ tB(ω), there exists R2(ω), P - a.s. bounded, such that

∫ 0

−1

∥∥ṽ(t)
∥∥2

Ṽ
dt ≤ R2(ω),

where

R2(ω) := 1

ν
R

{t=−1}
1 (ω) +

∫ 0

−1
f (t) dt +

∫ 0

−1
Rs

1(ω)

(
2C∗
∥∥z̃α(s)

∥∥
Ṽ

+ k0ν

2

)
ds.

Notice again that in principle R2(ω) depends on α, however, if we fix α = α0 := 2α∗(ν)

then R2(ω) will depend only on ν and the statement of Lemma 17 will still be valid.

Proof Integrate (27) over (−1,0), then use Lemma 15 to estimate |ṽ(−1)|2
H̃

. �

Lemma 18 Assume the assumptions of Lemma 17 are satisfied, then there exists R3(ω),
P -a.s. finite such that

∥∥ṽ(0)
∥∥2

Ṽ
≤ R3(ω),

where

R3(ω) :=
(

R2(ω) +
∫ 0

−1

(
2C2

∗
(
Rs

1(ω) + ∣∣z̃α(s)
∣
∣2
H̃

)∥∥z̃α(s)
∥
∥2

Ṽ
+ 2α2

ν

∣
∣z̃α(s)

∣
∣2
H̃

)
ds

)

× exp

(∫ 0

−1
2C2

∗
(
Rs

1(ω) + ∣∣z̃α(s)
∣∣2
H̃

)
ds

)
.

Proof Let us take the inner product in H̃ of (22) with Ãṽ, we get

1

2

d

dt
‖ṽ‖2

Ṽ
+ ν|Ãṽ|2

H̃
= −〈B̃λ

(
ṽ + z̃α, ṽ + z̃α

)
, Ãṽ

〉+ α
〈
z̃α, Ãṽ

〉

≤ C∗
∣∣B̃λ

(
ṽ + z̃α, ṽ + z̃α

)∣∣
H̃

|Ãṽ|H̃ + α
∣∣z̃α
∣∣
H̃

|Ãṽ|H̃

≤ ν

2
|Ãṽ|2

H̃
+ C2

∗
∣∣ṽ + z̃α

∣∣2
H̃

∥∥ṽ + z̃α
∥∥2

Ṽ
+ 4α2

ν

∣∣z̃α
∣∣2
H̃

.
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In the above estimate, we have used Lemma 2 and the Young’s inequality. Hence,

∥∥ṽ(t)
∥∥2

Ṽ
≤ ∥∥ṽ(s)

∥∥2

Ṽ
+
∫ t

s

2C2
∗
∣∣ṽ(r) + z̃α(r)

∣∣2
H̃

∥∥ṽ(r)
∥∥2

Ṽ
dr

+
∫ t

s

(
2C2

∗
∣∣ṽ(r) + z̃α(r)

∣∣2
H̃

∥∥z̃α(r)
∥∥2

Ṽ
+ 2α2

ν

∣∣z̃α(r)
∣∣2
H̃

)
dr.

Using Gronwall lemma, we get

∥∥ṽ(t)
∥∥2

Ṽ
≤ ∥∥ṽ(s)

∥∥2

Ṽ
e
∫ t
s 2C2∗ |ṽ(r)+z̃α(r)|2

H̃
dr

+
∫ t

s

(
2C2

∗
∣∣ṽ(r) + z̃α(r)

∣∣2
H̃

∥∥z̃α(r)
∥∥2

Ṽ
+ 2α2

ν

∣∣z̃α(r)
∣∣2
H̃

)
e
∫ t
r 2C2∗ |ṽ(r ′)+z̃α(r ′)|2

H̃
dr ′

dr.

Therefore, for t = 0, we have

∥∥ṽ(0)
∥∥2

Ṽ
≤ ∥∥ṽ(s)

∥∥2

Ṽ
e
∫ 0
s 2C2∗ |ṽ(r)+z̃α(r)|2

H̃
dr

+
∫ 0

s

(
2C2

∗
∣
∣ṽ(r) + z̃α(r)

∣
∣2
H̃

∥
∥z̃α(r)

∥
∥2

Ṽ
+ 2α2

ν

∣
∣z̃(r)

∣
∣2
H̃

)
e
∫ 0
r 2C2∗ |ṽ(r ′)+z̃α(r ′)|2

H̃
dr ′

dr.

Now, we integrate over (−1,0) to obtain

∥∥ṽ(0)
∥∥2

Ṽ
≤
(∫ 0

−1

∥∥ṽ(s)
∥∥2

Ṽ
ds +

∫ 0

−1

(
2C2

∗
∣∣ṽ(s) + z̃(s)α

∣∣2
H̃

∥∥z̃α(s)
∥∥2

Ṽ
+ 2α2

ν

∣∣z̃α(s)
∣∣2
H̃

)
ds

)

× exp

(∫ 0

−1
2C2

∗
∣
∣ṽ(s) + z̃α(s)

∣
∣2
H̃

ds

)
.

Consequently, we use the estimate of the preceding lemma to complete the proof. �

Lemma 19 Let ϕλ(t,ω) be a stochastic flow associated to (9), defined on a θt -invariant
full measure set 
0

1. On the θt -invariant full measure set 
0
W described previously, one can

define z̃α(t,ω) and ṽ(t,ω, ũ0), say for a given fixed α = α0 := 2α∗(ν) (see (21)). On the
θt -invariant full measure set 
0 = 
0

1 ∩ 
0
W we have

ϕλ(t,ω)ũ0 = ṽ(t,ω, ũ0) + z̃α(t,ω),

and for all ω ∈ 
0, there exists a compact absorbing set at time 0 in H̃ for ϕλ(t,ω).

Proof We have proved in Lemma 18, that the ball B(0,R3(ω) is an absorbing set at time 0
in Ṽ , which is compact in H̃ . Hence, defining K(ω) := {u ∈ Ṽ : ‖u‖2

Ṽ
≤ R3 + ‖z̃α(0,ω)‖2

Ṽ
}

concludes the proofs. �

Theorem 20 For every value of the parameter λ ∈ R, the random dynamical system ϕλ

associated to the equation (9) has a unique global random attractor Aλ(ω).
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Proof Using Theorem 11 and the existence of a compact absorbing set in H̃ , we have the
existence of a random attractor Aλ(ω) which is forward invariant. �

We can now apply Theorem 2 from [8]. The statement of this theorem is composed of two
parts, the first one devoted to the convergence of the random attractor to the deterministic
one as the intensity of the noise goes to zero; the second one to the upper semicontinuity of
the random attractor when the parameter of the noise varies with continuity to some non-zero
value. We apply the second part. The assumptions of the second part are: i) the existence
of the random attractor for every fixed value of the parameter, ii) the P -a.s. continuous
dependence of trajectories on the parameter, in any fixed finite interval of time, uniformly in
the initial conditions taken from any fixed non-random bounded set. Both assumptions have
been proved in the previous sections. Thus we get the following final result.

Theorem 21 Let Aλ(ω) be the random attractor associated with equation (9), then there is
upper semicontinuous convergence of Aλ(ω) to A0(ω) as λ → 0:

lim
λ→0

dH

(
Aλ(ω), A0(ω)

)= 0 with P -a.s.

4.3 Random Squeezing Property

In this section, we are going to establish that the random attractor of the random dynamical
system ϕ associated with (9) has a finite Hausdorff dimension (notice here that for simplic-
ity of notation, we dropped the superscript λ in ϕλ. Let ũ and ṽ be two solutions of the
associated equation (9), then the difference ũ − ṽ is solution of

d(ũ − ṽ)

dt
+ νÃ(ũ − ṽ) = −B̃λ(ũ, ũ − ṽ) − B̃λ(ũ − ṽ, ṽ). (31)

Lemma 22 Let � be the orthogonal projection on the first n eigenvectors of the operator Ã.
Then,

∣∣�
(
ϕ(t,ω)ũ0 − ϕ(t,ω)ṽ0

)∣∣
H̃

≤ |ũ0 − ṽ0|H̃ e
C∗
ν

∫ t
0 R1(θsω)ds (32)

∣
∣(I − �)

(
ϕ(t,ω)ũ0 − ϕ(t,ω)ṽ0

)∣∣
H̃

≤ |ũ0 − ṽ0|H̃
(

e−kn+1νt +
( √

2C2

(νkn+1)3/2

)
e
∫ t

0 [R1(θs (ω))]2+ C∗
ν R1(θs (ω)) ds

)
, (33)

where C∗ is the constant in inequality (6), and C is the constant in the inequalities in
Lemma 2, for all t ≥ 0 and all ũ0, ṽ0 ∈ A(ω), where R1 = R

{t=0}
1 given in Lemma 16, say for

a given fixed α = α0 := 2α∗(ν) (see (21)).

Proof We multiply (31) by ũ − ṽ, and use inequality (6) to obtain

1

2

d

dt

∣∣(ũ − ṽ)
∣∣2
H̃

+ ν
∥∥(ũ − ṽ)

∥∥2

Ṽ
≤ ∣∣〈(B̃λ(ũ − ṽ, ṽ)

)
, (ũ − ṽ)

〉∣∣

≤ ν

2

∥∥(ũ − ṽ)
∥∥2

Ṽ
+ 1

2ν

∥∥B̃λ(ũ − ṽ, ṽ)
∥∥

Ṽ ′

≤ ν

2

∥∥(ũ − ṽ)
∥∥2

Ṽ
+ C∗

2ν
|ũ − ṽ|2

H̃
|ṽ|2

H̃
.
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Using Gronwall lemma, we obtain

∣
∣ũ(t) − ṽ(t)

∣
∣2
H̃

≤ ∣∣ũ(t0) − ṽ(t0)
∣
∣2
H̃

e
C∗
ν

∫ t
t0

|ṽ(s)|2
H̃

ds

Now, using the invariance of the attractor, if we take ũ0, ṽ0 ∈ A(ω) then ũ(t), ṽ(t) ∈ A(θtω),
and therefore by Lemmas 15 and 16 we have

∣∣ϕ(t,ω)ũ0 − ϕ(t,ω)ṽ0

∣∣2
H̃

≤ |ũ0 − ṽ0|2H̃ e
C∗
ν

∫ t
0 R1(θsω)ds (34)

for all t ≥ 0 and all ũ0, ṽ0 ∈ A(ω).
Recall that � is a projection on the n-dimensional subspace of eigenvectors of the oper-

ator Ã, we have

∣∣�
(
ϕ(t,ω)ũ0 − ϕ(t,ω)ṽ0

)∣∣2
H̃

≤ ∣∣ϕ(t,ω)ũ0 − ϕ(t,ω)ṽ0

∣∣2
H̃

.

Let Q := I − �, it commutes with Ã but not with B̃λ.
Let us apply the operator Q to (31), then using Lemma 2 and the Poincare inequality we

get

1

2

d

dt

∣∣Q(ũ − ṽ)
∣∣2
H̃

+ ν
∥∥Q(ũ − ṽ)

∥∥2

Ṽ
≤ ∣∣〈Q(B̃λ(ũ, ũ − ṽ)

)
,Q(ũ − ṽ)

〉∣∣

+ ∣∣〈Q(B̃λ(ũ − ṽ, ṽ)
)
,Q(ũ − ṽ)

〉∣∣

≤ (∣∣B̃λ(ũ, ũ − ṽ)
∣
∣
H̃

+ ∣∣B̃λ(ũ − ṽ, ṽ)
∣
∣
H̃

)∣∣Q(ũ − ṽ)
∣
∣
H̃

≤ C√
kn+1

|ũ − ṽ|H̃
(‖ũ‖Ṽ + ‖ṽ‖Ṽ

)∥∥Q(ũ − ṽ)
∥
∥

Ṽ

≤ ν

2

∥∥Q(ũ − ṽ)
∥∥2

Ṽ
+ C2

2kn+1ν
|ũ − ṽ|2

H̃

(|ũ|2
Ṽ

+ |ṽ|2
Ṽ

)
.

Now, using the Poincare inequality on the left side of the above inequality we get that

d

dt
|Q(ũ − ṽ)|2

H̃
+ νkn+1|Q(ũ − ṽ)|2

H̃
≤ C2

kn+1ν
|ũ − ṽ|2

H̃

(|ũ|2
Ṽ

+ |ṽ|2
Ṽ

)
.

Hence,

∣∣Q(ũ − ṽ)(t)
∣∣2
H̃

≤ ∣∣Q(ũ − ṽ)(t0)
∣∣2
H̃

− kn+1ν

∫ t

t0

∣∣Q(ũ − ṽ)(s)
∣∣2
H̃

ds

+ C2

kn+1ν

∫ t

t0

∣
∣(ũ − ṽ)(s)

∣
∣2
H̃

(∣∣ũ(s)
∣
∣2
Ṽ

+ ∣∣ṽ(s)
∣
∣2
Ṽ

)
ds

Using Gronwall lemma we get

∣
∣Q(ũ − ṽ)(t)

∣
∣2
H̃

≤ ∣∣Q(ũ − ṽ)(t0)
∣
∣2
H̃

e−kn+1ν(t−t0)

+ C2

kn+1ν

∫ t

t0

e−kn+1ν(t−s)
∣
∣(ũ − ṽ)(s)

∣
∣2
H̃

(∣∣ũ(s)
∣
∣2
H̃

+ ∣∣ṽ(s)
∣
∣2
H̃

)
ds.
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Let us take t0 = 0 and ũ0, ṽ0 ∈ A(ω) , then we have, thanks to Lemmas 15 and 16, that

∣∣Q(ũ − ṽ)(t)
∣∣2
H̃

≤ |ũ0 − ṽ0|2H̃ e−kn+1νt + C2

kn+1ν

∫ t

0
e−kn+1ν(t−s)R1

(
θs(ω)

)∣∣(ũ − ṽ)(s)
∣∣2
H̃

ds.

We use (34) in the above inequality to obtain

∣∣Q(ũ − ṽ)(t)
∣∣2
H̃

≤ |ũ0 − ṽ0|2H̃
(

e−kn+1νt + C2

kn+1ν

∫ t

0
e−kn+1ν(t−s)R1

(
θs(ω)

)
e
∫ s

0
C∗
ν R1(θr (ω)) dr ds

)

≤ |ũ0 − ṽ0|2H̃
(

e−kn+1νt + C2

kn+1ν

(
e
∫ t

0
C∗
ν R1(θs (ω)) ds

)∫ t

0
e−kn+1ν(t−s)R1

(
θs(ω)

)
ds

)
.

On the other hand using Cauchy-Schwarz inequality and the fact that
√

x ≤ ex for all x > 0,

∫ t

0
e−kn+1ν(t−s)R1

(
θs(ω)

)
ds ≤

(∫ t

0
e−2kn+1ν(t−s)

)1/2(∫ t

0

[
R1
(
θs(ω)

)]2
ds

)1/2

≤
(

1

2kn+1ν

)1/2

e
∫ t

0 [R1(θs (ω))]2 ds .

Combining all the above estimates we get that

∣
∣Q(ũ − ṽ)(t)

∣
∣2
H̃

≤ |ũ0 − ṽ0|2H̃
(

e−kn+1νt +
√

2C2

(kn+1ν)3/2
e
∫ t

0 [R1(θs (ω))]2+ C∗
ν R1(θs (ω)) ds

)
. �

4.4 Finite Dimensionality of the Random Attractor

In order to be able to apply Theorem 14 we need to show that E(CH(ω)) < ∞, where

CH(ω) := [R1(ω)
]2 + C∗

ν
R1(ω), (35)

is the exponent in equation (33) of the squeezing Lemma 22. This is because CH(ω) plays,
in our case, the role of C5(ω) in Theorem 14. Here R1(ω) = R

{t=0}
1 (ω) given in Lemma 16

(see also Lemma 22), say for a given fixed α = α0 := 2α∗(ν) (see (21)). In order to get
the finite expectation of CH , i.e. E(CH(ω)) < ∞, we need to estimate the moments of the
radii R1.

Proposition 23 Let C∗ > 0 be the constant in the inequality (6), γ0 = νk0, and α0 = 2α∗(ν)

(see (21)). Then the stationary process z̃t that solves of the equation

dz̃t = −(Ã + α0)z̃t dt + dW̃t

satisfies

E
[
eC∗

∫ τ
s ‖z̃t ‖Ṽ

dt
]≤ C̃2e

γ0(τ−s),

for all s < τ ≤ 0, where C̃2 = E[e
C2∗‖z̃0‖2

Ṽ
4γ0 ] < ∞.
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Proof By Young’s inequality we have

C∗‖z̃t‖Ṽ = 2
√

γ0(τ − s)
C∗‖z̃t‖Ṽ

2
√

γ0(τ − s)
≤ γ0(τ − s) + C2∗‖z̃t‖2

Ṽ

4γ0(τ − s)
,

therefore,

E
[
eC∗

∫ τ
s ‖z̃t ‖Ṽ

dt
]≤ eγ0(τ−s)E

[
e

1
(τ−s)

∫ τ
s

C2∗‖z̃t ‖2
Ṽ

4γ0
dt]

.

Thus, it is sufficient to show that

E
[
e

1
(τ−s)

∫ τ
s

C2∗‖z̃t ‖2
Ṽ

4γ0
dt]≤ C̃2.

Thanks to Jensen inequality we have

E
[
e

1
(τ−s)

∫ τ
s

C2∗‖z̃t ‖2
Ṽ

4γ0
dt]≤ 1

(τ − s)

∫ τ

s

E
[
e

C2∗‖z̃t ‖2
Ṽ

4γ0
]
dt.

Since z̃t is a stationary process then it follows that

E
[
e

C2∗‖z̃t ‖2
Ṽ

4γ0
]= E

[
e

C2∗‖z̃0‖2
Ṽ

4γ0
]
< ∞,

thanks to (21). The proof is complete. �

Let us recall that

Rt
1(ω) := 1 +

∫ t

−∞
f (s)e

∫ t
s (2C∗‖z̃(r)‖− k0ν

2 ) dr ds

where

f (t) := 4C2∗
ν

∣∣z̃(t)
∣∣4 + 8α2

k0ν

∣∣z̃(t)
∣∣2,

and that R1(ω) = R
{t=0}
1 (ω), which, as it has been remarked in Sect. 4.2, depend on the pa-

rameter α. Hereafter we choose α = α0 = 2α∗(ν) (see (21) and Proposition 23). Therefore,
the relevant results of Sect. 4.2 are valid for this choice of α.

Lemma 24 Let γ0 and α0 be as in Proposition 23. Then

E
((

R1(ω)
)2)

< ∞,

and by the Cauchy-Schwarz inequality

ER1(ω) < ∞.

Consequently,

E(CH) < ∞, (36)

where CH(ω) is given in (35).
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Proof First we observe that using successively Jensen inequality, Fubini Theorem and
Hölder inequality yield

E
(
R1(ω)

)2 = E

(
1 +

∫ 0

−∞
f (s)e

∫ 0
s (2C∗‖z̃(r)‖− k0ν

2 ) dr ds

)2

≤ 2 + E

(∫ 0

−∞
f (s)e

∫ 0
s (2C∗‖z̃(r)‖− k0ν

2 ) dr ds

)2

≤ 2 + E

∫ 0

−∞
f (s)2e2

∫ 0
s (2C∗‖z(r)‖− k0ν

2 ) dr ds

≤ 2 +
∫ 0

−∞
E
(
f (s)2e2

∫ 0
s (2C∗‖z̃(r)‖− k0ν

2 ) dr
)
ds

≤ 2 +
∫ 0

−∞

(
Ef (s)4

)1/2(
Ee4

∫ 0
s (2C∗‖z̃(r)‖− k0ν

2 ) dr
)1/2

ds.

The process z̃ is stationary, thus

E
(
f (s)4

)= E
(
f (0)4

)
.

All moment of a Gaussian random variable are finite, hence

E
(
f (0)4

)
< ∞

Now, using the preceding estimates and Proposition 23 we conclude that

E
(
R1(ω)

)2 ≤ 2 + (Ef (0)4
)1/2
∫ 0

−∞

(
Ee

∫ 0
s (8C∗‖z̃(r)‖−2k0ν) dr

)1/2
ds

≤ 2 + (Ef (0)4
)1/2
∫ 0

−∞
ek0νs

(
Ee

∫ 0
s 8C∗‖z̃(r)‖dr

)1/2
ds

≤ 2 +
√

C̃2

(
Ef (0)4

)1/2
∫ 0

−∞
e(k0ν− γ0

2 )s ds.

Since γ0 = νk0, then

E
((

R1(ω)
)2)

< ∞,

and the proof is complete. �

As a consequence, we have the following theorem

Theorem 25 Let K1, K2 and K3 be the absolute constant stated in Theorem 14. Let n be
large enough such that

√
2C2

(νkn+1)3/2
≤ K1, and kn+1ν ≥ K2E(CH),



716 H. Bessaih et al.

where CH is given in (35), for α = α0 = α∗(ν) (see (21)). Then, P -a.s. the random attractor
Aλ(ω) of the random dynamical system ϕλ associated with (9) has finite Hausdorff dimen-
sion which is less than K3n lnn.

Proof The proof follows from applying Theorem 14 for μ =
√

2C2

(νkn+1)3/2 and δ = kn+1ν. Then
by virtue of (36) all the assumptions of Theorem 14 are satisfied. Hence, we get that P -a.s.
the random attractor Aλ(ω) of the random dynamical system ϕλ associated with (9) has
finite Hausdorff dimension which is less than K3n lnn. This completes the proof. �
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